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SUMMARY 

An estimated 2 billion people globally are affected by micronutrient deficiencies, 

while around one third of the global population is at risk of at least one micronutrient 

deficiency. Micronutrient deficiencies, also known as hidden hunger, can be linked to 

significant disease burden and economic loss. Food-based approaches to tackling 

micronutrient deficiencies include improving the micronutrient content of widely 

consumed foods through large-scale food fortification or biofortification, both of 

which have been proven to be efficacious, cost-effective, and scalable in increasing 

micronutrient intakes and improving associated biological outcomes. The literature is 

replete with evidence on the efficacy, acceptability, and cost-effectiveness of each 

of these approaches but with few discussions of their complementarity. In this paper, 

we present a narrative review of food fortification and biofortification and highlight 

their complementary roles in helping transform food systems to deliver healthy and 

accessible foods for all.  

We find that there are three critical conditions required to maximise the potential 

impact of these two complementary interventions: 1) programmes aligned with the 

needs, constraints, and opportunities of the population in terms of consumption 

patterns, supply chains, and market structures; 2) easy-to-implement, cost-effective, 

and real-time monitoring of programme delivery, coverage, cost, and nutrient intakes; 

and 3) a rigorous evidence-base, including lessons learnt, to help inform policy and 

programme design and assist food systems transformation through the everyday 

foods consumed by all. 

Large-scale food fortification and biofortification are not – individually or together – 

silver bullets for addressing micronutrient deficiencies, but they represent a golden 

opportunity to strengthen food systems through their backbones (i.e., staple foods 

and condiments), to deliver healthier diets for all. 

KEY MESSAGES  

• Large-scale food fortification and biofortification are proven to be efficacious, 

effective, acceptable, cost-effective, and scalable interventions to improve 

nutrient intakes and health outcomes 

• By scaling both large-scale food fortification and biofortification, multiple food 

vehicles can be enriched, coexisting deficiencies can be addressed, and 

different population segments reached.  

• By enriching widely consumed staples and condiments, large-scale food 

fortification and biofortification can transform food systems without requiring 

changes in consumer behaviour or significant costs to consumers or 

producers/processers. 
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BACKGROUND AND OBJECTIVE 

Micronutrient deficiencies (also known as hidden hunger) affect a large proportion of 

the world’s population (an estimated 2 billion people) and can be linked to illnesses, 

disability, and even death as well as associated economic losses (1). When left 

unaddressed, hidden hunger limits children’s ability to reach their full potential, adults’ 

productivity and income, and countries’ economic development and growth for 

generations to come (2). Widespread deficiencies in key micronutrients such as folate, 

iodine, iron, vitamin A, and zinc are associated with perinatal complications, poor 

growth, impaired cognitive development, and increased risk of morbidity and 

mortality (1). More broadly, six out of top ten risk factors driving the global burden of 

disease are diet-related (3). Additionally, the effects of the COVID-19 pandemic, 

coupled with the effects of ever-growing climate crises and conflicts, could 

exacerbate malnutrition, including micronutrient deficiencies, particularly in low- and 

middle-income countries (LMICs) and among young children and other vulnerable 

populations (4–6). 

The ideal solution for alleviating hidden hunger is consumption of a varied and diverse 

diet that provides enough micronutrients to meet an individual’s physiological needs. 

Unfortunately, such diets are often not available or affordable to many households, 

particularly in LMICs: an estimated 3 billion people cannot afford a healthy diet (7). 

Food-based approaches, such as the improvement of the micronutrient content of 

widely consumed foods and condiments through industrial fortification or 

biofortification, are proven to be efficacious, cost-effective, and scalable solutions to 

improving micronutrient intakes and associated health outcomes (8). 

Large-scale food fortification (LSFF), also known as industrial or mass fortification, is the 

addition of one or more vitamins and/or minerals to staple foods at the point of 

processing. LSFF programmes have been in effect since the 1920s, when salt iodisation 

programmes were initiated in Switzerland and Michigan, USA (9). Based on early 

successes of salt iodisation in decreasing goitre incidence, food fortification was 

scaled up and expanded to milk (vitamin D), flour and bread (B vitamins and iron), 

and other staples and condiments. 

Biofortification (also known as nutrient enrichment) of staple crops is the use of 

conventional crop breeding methods to produce varieties with greater density of 

bioavailable vitamins and minerals in addition to improved productivity, resistance to 

biotic and abiotic stresses, climate resilience, and food palatability (10). 

Biofortification was conceptualised in the 1990s and was consolidated as a 

programmatic strategy with the formation of the HarvestPlus programme of the 

Consultative Group on International Agricultural Research (CGIAR) in 2003 (10). 

Delivery of biofortified planting material through pilot projects began in Uganda and 

Mozambique in 2006-2007 (11). Subsequently, programmes were established across 

several countries (including Bangladesh, the Democratic Republic of the Congo, 

India, Nigeria, Pakistan, Rwanda, and Zambia).   
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The literature is replete with evidence on the efficacy, potential impact, and cost-

effectiveness of LSFF and biofortification (12), but with few discussions of the 

combination of these two interventions (12,13). In this paper, we present a narrative 

review of these two approaches to improving diets and elucidate their position as key 

food systems interventions. In doing so, we additionally seek to clarify the 

circumstances in which they should be prioritised, individually and in combination. To 

inform further policy and programme priorities, we finally present the current progress 

in their scale up and implementation and identify gaps and opportunities.  

HOW EFFICACIOUS, EFFECTIVE, AND COST-EFFECTIVE ARE FORTIFICATION AND BIOFORTIFICATION 
INTERVENTIONS? 

LARGE-SCALE FOOD FORTIFICATION 

The efficacy (i.e., the performance under ideal and controlled settings) of LSFF has 

been well-demonstrated (8,14,15). The evidence confirms that the consumption of 

fortified foods can improve micronutrient status and functional outcomes related to 

micronutrient deficiencies across different population groups for a range of 

micronutrients (e.g., iron, folic acid, iodine, vitamin A, vitamin D, and zinc) and food 

vehicles (e.g., wheat flour, maize flour, rice, salt, oil, sugar, soy and fish sauces, 

bouillon, and milk) (12).  

The effectiveness (i.e., the performance in real world programmatic settings) of LSFF 

has been similarly demonstrated in high-income countries and to a lesser extent in 

LMICs. In many high-income countries, LSFF has been credited for its positive impact 

on various micronutrient deficiency disorders, including the elimination of pellagra 

and beriberi from flour fortification with B vitamins (niacin and thiamine, respectively) 

(16,17), reduction in neural tube defects (NTDs) from cereal grain fortification with folic 

acid (18–20), elimination of rickets from milk fortification with vitamin D (17), and the 

reduction in goitre prevalence from salt iodisation (21). In LMICs, measurable 

improvements in micronutrient and health status have also been demonstrated, 

including reductions in anaemia (from iron fortification), goitre (salt iodisation), NTDs 

(folic acid fortification), and vitamin A deficiency (22). However, several critical 

factors that limit effective and sustainable implementation of LSFF programmes have 

also been identified. These include poor compliance with standards and inadequate 

monitoring and enforcement, which may limit the potential impact of these 

programmes and for which there is often limited data available (12).  

The benefit-cost ratios — the ratio of the economic benefits relative to the costs — of 

LSFF are impressive and are the reason it has been consistently ranked as one of the 

best development interventions (23). With estimates of 30:1 for iodine in salt, 46:1 for 

folic acid in wheat or maize flour, and 8:1 for iron in wheat or maize flour (24), LSFF 

ranks higher than immunisation coverage, water and sanitation provision, and malaria 

control.   

BIOFORTIFICATION 

The efficacy of biofortified staple crops in reducing micronutrient deficiencies among 

vulnerable populations in LMICs, namely children under 5, school children, 
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adolescent/young women, and women of reproductive age, is well-demonstrated for 

several biofortified crops, including iron biofortified beans (25,26), iron-biofortified 

pearl millet (27), vitamin A-biofortified cassava (28,29), vitamin A-biofortified maize 

(30–32), and vitamin A-biofortified sweet potato (33–35). Studies have also shown that 

consumption of biofortified crops resulted in significant improvements in functional, 

cognitive, and health outcomes such as improved memory and ability to pay 

attention (36,37) and improved reaction time (37). For iron-biofortified crops, studies 

have found improved ability to do every day physical tasks, also known as work 

efficiency (38). For vitamin A-biofortified crops, research has identified reductions in 

prevalence and duration of diarrhoea for children under five (39); protection from 

oxidative stress, chronic diseases, and age-related retinal degeneration (30); 

improved ability to see in dim light (40); and improved vitamin A content of breast milk 

(41). Efficacy of zinc biofortification (and LSFF) for reducing zinc deficiency is difficult 

to establish due to the dearth of zinc biomarkers sensitive enough to detect the effect 

of food-based zinc interventions on zinc outcomes. In lieu of zinc deficiency 

biomarkers, several health outcomes related to zinc deficiency have been 

investigated. For example, zinc-biofortified wheat was found to result in significant 

reductions in morbidity outcomes, such as days spent sick with pneumonia, vomiting, 

and fever (42). Studies comparing absorption of zinc-biofortified rice and wheat to 

their zinc-fortified counterparts found zinc biofortification to be at least as good a 

source of bioavailable zinc as zinc fortification (43–45). 

Since biofortification is a more recent intervention than LSFF, and given that 

effectiveness studies for agricultural-nutrition interventions such as biofortification 

require significant time and resource investments, the only completed effectiveness 

studies to date have been on vitamin A-biofortified sweet potato (35,46). These 

studies found delivery of this biofortified crop to result in significant adoption and 

consumption thereof; significant increases in vitamin A intakes among women and 

children; and significant improvement in vitamin A status for children in intervention 

households.  

There is a significant body of ex ante cost-effectiveness analyses of several 

biofortification interventions (see, e.g., (47,48)). These studies, and meta-analysis 

thereof, found most biofortification interventions to be highly cost-effective according 

to the World Bank criteria of cost (in USD) per Disability-Adjusted Life Year (DALY) 

saved (49). Based on such ex ante analyses, the Copenhagen Consensus ranked 

interventions that reduce micronutrient deficiencies, including biofortification, among 

the highest value-for-money investments for economic development. As per their 

analysis, for every USD invested in biofortification, as much as 17 USD of benefits may 

be gained (50). 

OVERVIEW OF FORTIFICATION AND BIOFORTIFICATION INTERVENTIONS 

WHAT IS THE PREMISE? 

Both LSFF and biofortification aim to increase the density and/or bioavailability of 

specific micronutrients in widely consumed staple foods and condiments. The 

rationale for focusing on these everyday food vehicles is to reach a large proportion 
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of the population without having to significantly change food production, purchase, 

and consumption patterns. While these interventions are not targeted to specific 

population groups, by targeting staple foods they have a high likelihood of reaching 

vulnerable groups whose diets consist mainly of staple foods that are widely available 

and affordable but often low in micronutrients and leave them at a high risk of 

micronutrient deficiencies.  

Many commonly consumed food vehicles are fortified and/or biofortified with 

different nutrients (Table 1). There is some overlap of food vehicles, nutrients, and 

countries across the two interventions (for example, zinc in wheat flour, rice, and 

maize and vitamin A in maize). Conversely, other food vehicles are only fortified 

industrially, such as milk, oil, and salt, or only biofortified, such as beans, cassava, pearl 

millet, and sweet potato.   

There is a wealth of global guidance on how to select food vehicles and set 

fortification levels in LSFF depending on the population of interest and micronutrient 

needs and consumption patterns in that population (51). For biofortification, there is a 

user-friendly tool called the Biofortification Priority Index (BPI) for identifying the most 

cost-effective and highest-impact country-crop-micronutrient combinations (52). 

Guidance for setting micronutrient targets for breeding biofortified crops is also 

available (53). 

Table 1. Common nutrients added to food vehicles through fortification and biofortification  

 

HOW ARE FORTIFICATION AND BIOFORTIFICATION DELIVERED WITHIN FOOD SYSTEMS? 

LSFF and biofortification interventions are implemented within food supply chains, 

which is one of the three major components of food systems (in addition to food 

Food vehicle Large-scale food fortification Biofortification 

Beans - Iron and zinc 

Cassava - Vitamin A 

Maize 

Iron, Calcium, Zinc, Folic acid, 

Vitamin B12, Vitamin A, Zinc, 

Thiamine, Niacin, Vitamin B6, 

and/or Vitamin D 

Vitamin A or Zinc 

 

Milk Vitamin A and/or Vitamin D - 

Oil 
Vitamin A, Vitamin D, and/or 

Vitamin K 
- 

Pearl millet - Iron 

Rice 

Iron, Folic acid, Vitamin B12, 

Vitamin A, Zinc, Thiamine, Niacin, 

and/or Vitamin B6 

Zinc 

Sweet potato - Vitamin A 

Salt Iodine, Iron - 

Wheat 

Iron, Calcium, Zinc, Folic acid, 

Vitamin B12, Vitamin A, Zinc, 

Thiamine, Niacin, Vitamin B6, 

and/or Vitamin D 

Zinc 
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environments and consumer behaviour) (54). All three components are influenced by 

various drivers that ultimately determine nutrition and health outcomes. In brief, the 

food supply chain for staple crops consists of six steps: 1) plant breeding research and 

development; 2) agricultural production; 3) storage and distribution; 4) processing; 5) 

packaging and distribution; and 6) retail and markets (Figure 1). 

Both LSFF and biofortification have the same ultimate goal and premise of tackling 

micronutrient deficiencies through improving the micronutrient content of staple 

foods, as described above. Despite this broader shared programme theory, the ways 

in which the goal is achieved and the points of entry into the food supply chain differ.  

 

Figure 1. Simplified conceptual framework of foods systems for diets and nutrition 

focusing on staple crop supply chains (adapted from High Level Panel of Experts 2017 

(54)) 

The LSFF delivery model utilises the existing food supply chain, with one additional step 

added at the point of processing whereby nutrients (in the form of premix) are added 

to the foods before they are packaged and sold. After that point, the packaged 

foods continue through the supply chain to retail outlets, after which the consumer 

obtains the food (by purchasing it or receiving it formally or informally) and ultimately 

consumes added nutrients in the foods that they already consume regularly.  

LSFF is often ensured by government mandates or legislation (55). The legislation 

stipulates the categories of foods included in the fortification programme, the level or 

range of nutrient to be added by industry, the agency responsible for regulation and 

enforcement of the legislation, and the penalties for non-compliance. As such, 

fortification programmes often include support for government capacity to monitor 

and enforce, industry incentives to comply, and consumer engagement to identify 

and select fortified brands (56,57). 
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The biofortification delivery model similarly utilises the existing food supply chain. At 

the point of plant breeding research and development, varieties are bred through 

conventional plant breeding methods to contain higher levels of certain 

micronutrients. These varieties are then multiplied and released by licensed seed 

companies, national systems, and/or humanitarian programs and then acquired by 

smallholder farmers for planting. The resulting foods produced are higher in 

micronutrient density for specific nutrients. These foods are then often consumed 

directly by the farming households and any surplus continues through the food supply 

chain to retail outlets and markets, where they reach the consumer. As the biofortified 

food product moves along the food supply chain, mechanisms are needed to identify 

the crop as being biofortified, especially in cases where the micronutrient trait is 

invisible (e.g., iron- and zinc-biofortified crops).   

For both strategies, an enabling environment can also play a pivotal role in the depth 

and breadth to which they can be scaled. Such an enabling environment includes – 

but is not limited to – investments in public research and development (e.g., product 

development for LSFF, plant breeding for biofortification), setting mandatory minimum 

standards for micronutrient content of seeds, grains, and foods, and inclusion of foods 

in input subsidy programmes and procurement policies.   

WHERE AND HOW WELL ARE THESE INTERVENTIONS BEING DELIVERED? 

LARGE-SCALE FOOD FORTIFICATION  

Globally, mandatory or voluntary fortification legislation is currently in effect in 145 

countries for salt, 99 countries for wheat flour, 19 countries for maize flour, and 36 

countries for oil (58) (Figure 2). Furthermore, 84 additional countries have recently 

been identified as candidates for new LSFF programmes (56). For illustration, Box 1 

draws from available programme records and evaluation evidence (59,60) to 

illustrate a successful LSFF programme in Costa Rica. 

 

Figure 2. Map of countries with mandatory or voluntary fortification programs (source 

data: Global Fortification Data Exchange 2020 (58)) 
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Surveys and, recently, household and market coverage data are collected through 

specific assessments such as the Fortification Assessment Coverage Toolkit (FACT) 

surveys (61). Quality of fortification is typically defined as compliance with national 

fortification standards for the type and amount of fortificant added to the food 

vehicles. Data on fortification quality may be collected as part of regulatory 

monitoring systems but are not always publicly available, and the frequency and 

methodology of collection vary widely between countries (62). 

The coverage and quality data available for current fortification programmes reveal 

several gaps in design and implementation, which limit the potential effectiveness of 

many programmes. These aggregated results are described in detail elsewhere (62); 

in summary, the potential for impact at the population level varies widely from 

programme to programme. Specifically, foods that have high population coverage in 

a fortifiable (i.e., industrially processed) form, like oil/ghee and salt, have the highest 

potential for impact; however, not all are reaching that potential due to poor quality 

(either a lack of fortification in general or fortification below standards). Other fortified 

foods, such as wheat and maize flour, have lower coverage in a fortifiable form, 

which reduces their potential reach in a population; they also face with similar quality 

issues to oil/ghee and salt.  

The collection and use of data on quality and coverage for programme design and 

decision making is critical to maximise the impact of LSFF programmes globally. 

 

BOX 1. INGREDIENTS FOR SUCCESSFUL STAPLE FOOD FORTIFICATION IN COSTA RICA 

Costa Rica began to address micronutrient deficiencies by adding iodine and fluoride to 

salt in 1974 and 1989, respectively. In response to the 1996 National Nutrition Survey, which 

found persistently high levels of micronutrient deficiencies in the country, the government 

established the cross-sectoral National Micronutrient Commission and worked with the 

private sector to fortify staple foods. Towards this end, the Ministry of Health carefully 

selected a basket of staple foods to be fortified with micronutrients that were deficient in 

the diet. Mandatory fortification of wheat flour began in 1997, maize flour in 1999, milk in 

2001, and rice in 2002. The choice of vehicles considered the consumption patterns of the 

most vulnerable groups. Of note, the government pursued a model where costs were 

borne by the private sector and the consumer and negotiated with industry to take 

primary ownership of fortification programmes.  

Monitoring data from 2000 to 2012 showed good compliance with fortification mandates 

for wheat and maize flour and for liquid and powdered milk, at levels that contributed the 

desired additional nutrient intakes for children (59). Consistent with these observations, the 

country observed significant declines in the prevalence of anaemia, iron deficiency, and 

iron-deficiency anaemia between 1996 and 2008. There was equity in this impact – the 

decreases were more pronounced in rural and urban areas than in metropolitan area of 

the capital city.  An examination of the programme impact pathway illustrated that these 

changes could be attributed to the programme (60). 

This case study illustrates that where LSFF programmes are designed, implemented, and 

monitored adequately, impact can be achieved (59). 
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BIOFORTIFICATION  

As of the end of 2019, over 340 biofortified varieties of 12 staple crops have been 

formally released for production in over 40 countries across Africa, Asia, and Latin 

America (63) (Figure 3). Having kicked off in 2010, delivery efforts for biofortification 

are relatively new and still at a smaller pilot scale in many countries. Product 

development, delivery, and implementation research for biofortified crops are 

spearheaded by the CGIAR’s International Potato Center (CIP) and HarvestPlus. In the 

past decade, these two organisations have been working closely with the public 

sector, private sector, and UN and NGO partners to bring biofortified planting 

materials to farming households and biofortified foods to consumers in several 

countries across Africa, Asia, and Latin America.  

 

Figure 3. Map of countries with released biofortified crops (data source: (63)) 

 

Currently, biofortification has been included in national nutrition policies in Africa (e.g., 

Malawi, Nigeria, Tanzania, and Uganda) and Asia (e.g., Bangladesh and Pakistan) as 

well as in agricultural policies in many more countries (64). Additionally, foods made 

from biofortified foods are now being included in public programmes, such as school 

feeding programmes in 11 countries (e.g., vitamin-A orange fleshed sweet potato 

(OFSP) in Gambia, Malawi, Mozambique, and Nigeria (65)). By the end of 2019, an 

estimated 8.5 million smallholder farming households were reached with biofortified 

iron beans and pearl millet, vitamin A cassava, maize, and OFSP, and zinc rice and 

wheat through HarvestPlus-led efforts and an additional 6.8 million farming households 

with OFSP vines through CIP-led efforts (63). 
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BOX 2. INNOVATIVE DELIVERY MODELS FOR SCALING IRON-BIOFORTIFIED BEANS IN RWANDA 

Rwanda’s iron-biofortified bean programme was initiated in 2010 by HarvestPlus, the 

Rwanda Agricultural Board (RAB), and the International Center for Tropical Agriculture 

(CIAT). This collaborative programme involved all actors along the bean value chain, from 

national bean breeders and farmers to retail food companies and consumers, to ensure 

sustainability and scale. Delivery approaches included sales through authorised agro-

dealers; direct marketing by the HarvestPlus country team in local markets; a payback 

system distributing iron-biofortified bean seeds conditional on the farmer giving back a 

previously agreed-upon portion of their harvest to the programme, and seed swaps in 

which local bean grains are exchanged for iron bean seeds. Informal dissemination also 

occurred through social networks (66,67). A 2019 iron bean adoption study recommended 

that for long-term adoption, policymakers should focus on: 1) direct marketing to speed 

initial and continued adoption and 2) payback mechanisms to reduce dis-adoption (66). 

Social networks increased adoption, suggesting that the positive effect of learning about 

and obtaining planting material from neighbours outweighs potential negative effects of 

free-riding or strategic delay (66). 

According to monitoring and evaluation data, by the end of 2018, 442,000 households were 

growing iron beans and an estimated 20% of the beans grown in Rwanda were of iron 

varieties. A cost-benefit analysis of the programme from 2010-2018 showed that for every 

dollar invested in the programme, 3 dollars’ worth of benefits (in yield and health gains) 

were accrued (68).  

There is strong government endorsement of biofortification in Rwanda, where biofortification 

is included in the national nutrition action plan. Rwandan authorities recently issued national 

standards for biofortified bean seeds and grain, which promoted fair trade, improved food 

processing, and boosted private-sector investment (69). In 2019, a multi-stakeholder 

platform, consisting of RAB, local non-governmental organisations, and seed multipliers, was 

developed to encourage and sustain private-sector engagement and further scale up 

delivery. 

 

ARE THE INTERVENTIONS REINFORCING EACH OTHER? 

There are currently no evaluations of the efficacy and cost-effectiveness of combined 

LSFF and biofortification interventions. However, some modelling studies have 

explored their potential complementarity. For example, a study in Zambia explored 

the optimal programme portfolio for tackling vitamin A deficiency by modelling 

various combinations of two current programmes, i.e., vitamin A-fortified sugar and 

vitamin A supplementation as part of Child Health Weeks, along with potential new 

programmes, including vitamin A-fortified vegetable oil and maize flour and vitamin 

A-biofortified maize (70). The study found that vitamin A oil fortification was the most 

cost-effective intervention but having both vitamin A-biofortified maize and vitamin A-

fortified oil programmes increased coverage (especially in rural areas) without a 

significant increase in costs. A similar analysis was carried out in Cameroon to identify 

the most cost-effective combination of vitamin A interventions among vitamin A-
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fortified oil and bouillon cube, vitamin A-biofortified maize, and periodic vitamin A 

supplementation for children (13). The study found that in certain regions of the 

country (e.g., in the South and in urban areas) fortification had the potential to 

eliminate vitamin A deficiency, while vitamin A supplementation and vitamin A-

biofortified maize would be needed to tackle vitamin A deficiency in the maize-

consuming Northern region. 

There are some inherent differences in how the two interventions are delivered. First 

and most notably, the entry points into the food supply chain in the food system differ: 

at processing for LSFF and prior to production for biofortification. Second, LSFF requires 

more substantial changes in practices among supply chain actors with processors 

needing to obtain high-quality premix, equipment to fortify, and training to fortify 

properly and undertake quality assurance and quality control. Comparatively, with 

biofortification the key behaviour change required is for farmers to choose to grow 

the biofortified varieties over the non-biofortified varieties they currently grow. In 

theory, this is simple but may come with its own set of challenges depending on 

availability of the biofortified planting material and its agronomic competitiveness 

compared to non-biofortified alternatives; it may also be challenging for aggregators 

and processors to be able to segregate the biofortified food from the non-biofortified 

variety if the micronutrient traits are invisible (e.g., for high-iron beans and zinc-

biofortified crops). 

Third, monitoring of the quality of programme delivery will vary between LSFF and 

biofortification in terms of how it is done and by whom. For example, in a mandatory 

LSFF programme, monitoring at production and market level is typically a government 

mandate whereby checks are done during which food samples are collected and 

tested to assure that those foods that are required to be fortified do in fact contain 

the added nutrient in the amounts required by the fortification standards. 

Comparatively, biofortification is not currently legislated in any country (except for 

pearl millet iron and zinc minimum breeding standards in India) and instead is 

included as an action area in national policies and strategies of several LMICs (i.e., 15 

in Africa, 3 in Asia, 6 in Latin America and the Caribbean). As such, currently there are 

no national regulatory requirements exist for standards or the regular collection and 

testing of samples. However, voluntary standards for zinc-biofortified wheat, maize, 

and rice (71) and iron enriched bean and pearl billet grain (72) were recently publicly 

released.  

There are natural complementarities across the two interventions. For example, 

micronutrient needs and food consumption patterns (and availability of food 

vehicles) vary by population, socio-economic status, and geography; therefore, one 

fortified or biofortified food vehicle is not likely sufficient to fill all nutrient gaps in the 

population. Rather a combination of foods with different nutrients (biofortified, 

fortified, and other micronutrient-dense foods such as animal-source foods, nuts, 

legumes, and fresh fruits and vegetables) is needed. As a result, the decisions around 

which foods to fortify and which biofortified crop varieties to release should be based 
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on population-specific contextual factors (i.e., micronutrient need, consumption 

patterns, availability, and affordability) that are regularly reviewed. 

Where there is an overlap in food vehicles and/or nutrients, it is important to consider 

the opportunities in the food supply chain and market structures to decide which 

intervention(s) to prioritise and/or where there may be benefits to overlapping them. 

For instance, LSFF may not be the best approach where widely produced staples are 

consumed without processing or are processed by many local, small-scale producers 

with limited capacity to fortify. In this context, ensuring availability of biofortified staple 

crops could help address gaps in micronutrient intakes. While in other instances, some 

populations that would be reached by each intervention are inherently different, so 

there is some complementarity in overlapping them. Overall, it is important to increase 

the nutritional quality of all crops bred and all foods processed, while ensuring that the 

new varieties of crops are suitable for different agro-ecological environments and a 

changing climate, and that processed foods are healthy and attractive to 

consumers. Given ever-changing consumer preferences, trade opportunities, and 

production technologies and environments, food systems and diets should be 

continuously evaluated, and additional interventions (or intensity and coverage of 

existing interventions) should be considered in case of gaps or excesses in any micro- 

or macronutrients. 

Although there are no documented examples, it is plausible that there may be some 

negative implications of overlapping LSFF and biofortification. For example, if both 

interventions include the same micronutrients and if other dietary sources provide high 

levels of that nutrient for some sub-populations and/or in addition to other sources of 

the nutrient (e.g., supplementation), there could be a risk of excessive intakes in some 

segments of the population (73,74). This would occur, for example, if industrial 

fortification with vitamin A was being undertaken for oil and sugar while 

simultaneously biofortifying maize and cassava with vitamin A – both within the 

context of a supplementation programme. Such a scenario would indicate gaps in 

programme design, since added micronutrient contents should consider population 

and sub-population level needs and potential to benefit.1  

Further research is needed to understand current food environments, consumers’ 

diets, micronutrient intakes and deficiencies, and their dynamics across time and 

seasons, rural versus urban areas, and different demographic and socio-economic 

characteristics, so as to evaluate potential contributions of LSFF or biofortification vis-à-

vis current intakes and other complementary programmes. In any case, it is important 

to remember that both interventions add to micronutrient intakes but are not the only 

sources in the diet. As such, continual assessment of micronutrient intakes in the total 

 
1 It is worth noting that provitamin A carotenoids are highly unlikely to increase the risk of vitamin A toxicity, because 

although β-carotene can be converted to vitamin A, the conversion of β-carotene to vitamin A decreases when 

body stores of vitamin A are high (75). Risk of excessive intake is also limited for iron. Globally, infrequent wide-scale 

implementation of iron supplementation programmes for young children and low compliance in women of 

reproductive age likely reduces potentially risky overlaps of iron interventions (e.g., fortified complementary foods, plus 

supplements, plus micronutrient powders in children) (76). Given highly controlled iron absorption and metabolism, 

excess in other vulnerable groups is low. 
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diet and how much each intervention contributes to shifting intakes is needed. In the 

long term, diet diversification is the goal, and multiple complementary and well-

targeted strategies can work towards this end. 

CONCLUSIONS  

In this paper, we described the centrality of LSFF and biofortification as food systems 

interventions that can contribute to shifting distributions of nutrient intakes towards 

adequacy, i.e., “making all boats rise.” While neither is a silver bullet – individually or 

together – for resolving the pervasive problem of hidden hunger, in this paper we 

have described similarities, differences, and potential synergies.  

We conclude by noting three critical ingredients required to maximise the potential 

impact of these two complementary interventions. First, programmes must be 

designed in line with the needs of the population in terms of consumption patterns, 

supply chains, and market structures. This is good practice for each intervention but 

particularly important for delivering the interventions in combination. By scaling both 

fortification and biofortification, multiple food vehicles can be enriched, coexisting 

deficiencies can be addressed, and different population segments can be reached.  

Second, monitoring of programme delivery, coverage, and nutrient intakes (from all 

dietary sources) is essential. This suggests a need for metrics and methods (31,37). 

Ideally, coverage indicators for industrially fortified and biofortified foods can be 

incorporated into routine household surveys, such as Demographic and Health 

Surveys, Household Consumption and Expenditure Surveys, and Living Standards 

Measurement Studies, to facilitate monitoring. Third, and finally, national-level 

guidance should be developed on how best to design and layer micronutrient 

deficiency mitigation interventions in a manner that builds on their synergies, improves 

cost-effectiveness, and ensures effective coverage, particularly among those most at-

risk of deficiency. Such guidance would be useful for consideration by countries as 

they develop roadmaps and action plans to transform their food systems by 2030 to 

deliver nutritious food for all.   

To inform policy and programme priorities, further research is needed to conduct 

implementation and compliance studies and impact evaluations to demonstrate the 

performance and impact of LSFF and biofortification interventions in combination, 

specifically quantifying the contribution of these strategies to nutrient intakes in the 

diet. LSFF and biofortification are not silver bullets, but they represent a golden 

opportunity to strengthen food systems through their backbones (i.e., staple foods), to 

deliver healthier diets for all. 
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