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Abstract
Moisture adsorption isotherms and thermodynamic properties of dried tomato slices obtained from four tomato varieties 
were investigated. Freshly harvested tomatoes were pretreated with potassium metabisulphite solution (0.2%, weight/volume) 
before drying in a cabinet dryer at 60± 2° C. Moisture adsorption behavior of the dried tomato slices was determined using 
the static gravimetric method at 25, 30 and 40o C. The data fitted to GAB, M.BET, DLP, Smith and Oswin sorption models. 
The isosteric heat of sorption was also determined. Moisture adsorption isotherm of dried tomato slices from UC82B, Roma, 
Eva-F1 and Kerewa varieties exhibited a sigmoid isotherm curve typical of type II BET classification. Increase in temperature 
resulted into a decrease in the equilibrium moisture content. The GAB, DLP and modified BET model adequately modeled 
the isotherms of dried tomato slices. The relationship between isosteric heat of sorption and the equilibrium moisture of 
dried tomato slices were accurately described by exponential model. 
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Introduction
Tomato (Solanum lycopersicum L.) is one of the highly cultivat-
ed and substantially consumed vegetables in different parts of the 
world [1]. The most common color of tomato is red but, they also 
come in yellow, purple, green and black colors. Tomatoes possess 
various sizes and color and there are about 75,000 varieties world-
wide [2]. The cultivars that are predominantly cultivated and mar-
keted in Nigeria include: Ibadan local, Roma-VF and Ife-1 [3,4]. 
Nigeria is the second largest producer of tomato in Africa and 
ranked 14th in the world, with an annual production of about 1.6-
1.8 million tonnes at an average yield of 5.77 tonnes per hectare 
[5,6]. Thus, the country has comparative advantage and capacity 
to be the highest producer and exporter of tomato in Africa [7]. 

Unfortunately, Nigeria tomato sub-sector/value chain is battling 
with challenges such as critical inputs deficiency, lack of improved 
agronomic practices, low yield and productivity, high postharvest 
losses and lack of processing technology/method and inadequate 
market or transport infrastructure [8,9]. Hence, the consumers 
demand for tomato and its derivatives in Nigeria far exceeds the 
supply.

Tomato and tomato-based products supply a large array of nutri-
ents as well as many health-related benefits to humans. Tomatoes 
and tomato derived products are rich in nutrients and phytochem-
icals such as carotenoids (predominantly, lycopene), flavonoids, 
ascorbic acid, potassium and vitamin E [10]. It contains all four 
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major carotenoids: α- and β- carotene, lutein and lycopene which 
may have individual benefits, but also have synergistic effect as a 
group [11,12]. Tomato constituents such as lycopene, phenolics, 
ascorbic acid and flavonoids are important antioxidants in the diet 
[13]. The major pigment responsible for the red color of tomatoes 
- lycopene, contributes 87% of total carotenoids present in ripe 
tomatoes [14]. The antioxidant role of lycopene is associated with 
immune regulatory abilities, DNA damage reduction, lowering of 
biological oxidative damage of proteins, lipids and other cell com-
ponents as well as transformation of malignant tissues [15]. 

Despite the aforementioned properties of tomato, which justifies 
its nutritional and economic importance, tomato, especially in ripe 
form, is not suitable for long-term storage after harvest because it 
is extremely liable to rot. Thus, enormous losses and wastage takes 
place during and postharvest phase [16]. This situation leads to 
significant losses both nutritionally and economically. Therefore, 
a key intervention aimed at preventing losses and wastage of to-
mato is of utmost priority in Nigeria and other developing tropical 
countries where there is marked difference between supply and 
demand at harvest and during off-season period [17]. Ugonna et 
al. reported that Nigeria has a large market for fresh and processed 
tomato products due to its large population of over 170 million 
and an estimated annual national population growth rate of 5.7% 
per annum coupled with an average economic growth rate of 3.5% 
per annum [18]. The demand for various processed products from 
tomato has been increasing progressively in the retail and food 
ingredients or additives markets and industries [18]. This under-
scores the need to develop appropriate techniques/technology for 
value addition to tomato to reduce postharvest losses, obtain value 
added products and in turn generate more revenue for the country 
while also serving as a source of nutrients and livelihood to farmer 
and processor. This will ensure the availability of tomato all year 
round and helps to lessen the need to till the land continuously, and 
thus reduces the adverse environmental effect. 

Amid the commonly employed processing methods for tomato 
processing and preservation, drying remains one of the most suit-
able because the final dried product moisture content is consider-
ably reduced thereby preventing microbial deterioration [19]. In 
addition, the weight and volume of the final product reduced after 
dehydration, which may be responsible for vital savings in the cost 
of handling, transport and storage [20]. Dehydration processes 
present an alternative technique of delivering tomato to commerce 
and consumers. Hot air drying is the most popular form of tomato 
drying because it is simple to operate and inexpensive [17]. Water 
activity (aw) is an important factor that influence the biochemical 
reactions during storage and shelf stability of dried products [21]. 
Moisture sorption isotherms are practical thermodynamic param-
eters for estimating interactions of water and food substances, and 
elaborate information to evaluate processing operations, such as 
drying, packaging, mixing, and storage [22]. It can as well be em-
ployed to explore structural characteristics of a food product, such 
as pore volume, specific surface area and pore size distribution 
as well as crystallinity. Sorption isotherms data can be used for 
choosing appropriate storage conditions, and packaging methods 

and materials that optimize or maximize retention of aroma, color, 
texture, nutrients and biological stability [23-26].

This study investigated the sorption isotherms of dried tomato 
slices with a view to providing information suitable for solving 
the critical problem of post-harvest losses by transforming tomato 
fruits into dried slices, predict the hygroscopic properties of de-
hydrated tomato slices and also find an acceptable, available and 
affordable package for the slices to enhance its use and storage 
domestically.

Materials and Methods
Four tomato varieties; UC82B, Roma and Kerewa varieties were 
purchased from Olomore market, Abeokuta, Ogun State, Nigeria 
while Eva-F1, (the hybrid variety) was obtained from a greenhouse 
in Abeokuta, Ogun State, Nigeria. Packaging materials used (glass 
containers, high-density polyethylene bags, polypropylene con-
tainers and low-density polyethylene bags) were procured from 
Lafenwa market, Abeokuta, Ogun State, Nigeria. 

Processing of Dried Tomato Slices
Wholesome tomatoes sorted from the bulk in terms of firmness, 
degree of ripeness (color) and freedom from defects. The tomatoes 
then cleaned rigorously by washing under running potable water. 
The washed tomatoes then sliced using a sharp stainless knife to 
10 mm thickness and the slices were sulphited according to the 
Akanbi et al., method with few modifications by dipping it in 0.2% 
potassium metabisulfite solution for 10 min [17]. The slices were 
thereafter drained and blotted before the drying process. The to-
mato slices were arranged on several perforated rows in the cabi-
net dryer (APV & Pasilac, England) and dried at a temperature of 
60° C to a final moisture content of below 10%. The dried tomato 
slices were cooled, wrapped with aluminum foil and packaged in 
zip-lock polythene bags and again in airtight plastic containers at 
4° C prior to further analyses.

Determination of Adsorption Isotherms of Dried Tomato 
Slices
Adsorption isotherms of dried tomato slices were determined using 
the static gravimetric method of saturated salt solutions at different 
temperatures (25, 30 and 40o C) to depict the ambient temperature 
within different geopolitical zones of the country. Experiments 
was performed using 2-4 g of the dried tomato slices for all tem-
peratures in the water activity range from 0.11 to 0.96 as earlier 
described by Adebowale et al. [21]. The saturated salt solution was 
prepared by dissolving in a jar, an appropriate quantity of salt in 
distilled water. The jar was then allowed to stabilize in incubators 
at their respective pre-set temperatures. Duplicate samples were 
there after placed inside hermetically sealed jars, which were then 
arranged in temperature-controlled incubators. The samples were 
weighed at 2-day interval until equilibrium was attained. Equilibri-
um was assumed to have been attained when the change in weight 
did not exceed 0.001 g for three consecutive readings. 

Mathematical Modeling of Adsorption Data of Dried To-
mato Slices
The experimental sorption isotherms data matched into different 
models presented in Table 1.
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Table 1: Moisture Sorption Isotherm Models used to Analyze EMC-ERH Data for Dried Tomato

Models Model Equation
GAB(Guggenheim-Anderson-de Boer; Van den 
Berg, C. 1985)
DLP (Double-Log Polynomial, Bonner and Ken-
ney, 2013)

 

Modified BET (Brunauer, et al., 1938)

(Oswin, 1946)  

(Smith, 1947) 
Where, aw = water activity
A,B, C and D = empirical constant
X = moisture content (kg/kg dry solids)
C1 = Quantity of water in the first sorbed fraction.
C2 = Quantity of water in the multilayer moisture fraction.
 a=amount of water for monolayer coverage.
b= interaction between adsorbate (water) and solid material (tomato slices)
	 c= correction coefficient.
Mo= monolayer moisture content which represents the moisture content at which the water is attached to each polar and ionic 
groups starts to behave as a liquid-like phase.
C = Energy constant related to the net heat of sorption related to the difference between the molecule of sorbtion energy of the first 
layer and the other remaining layers
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Determination of Thermodynamic Properties 
The isosteric heat of sorption which is a differential molar quantity 
derived from the temperature dependence of the sorption isotherm 
at a constant amount of adsorbed water moles (nm) is shown in 
equation 1 [25].

The isosteric heat of sorption (Qst) was then calculated using equa-
tion (2) where Lv is the latent heat of vapourization of pure water:

The differential entropy (Sd) was derived from Gibbs-Helmholtz 
equation (equation 3) where G is the free Gibbs energy in kj/mol 
[26].

By substituting equation 4 into equation 3 and rearranging, we 
have equation 5 [25,26].

By plotting ln(aw) vs 1/T for different constant moisture contents, 
the Qst

n and Sd was determined from the slope and y-intercept, re-
spectively [25].

Results and Discussion
Equilibrium Moisture Content of Dried Tomato Slices at Dif-
ferent Storage Temperatures and Water Activity
The equilibrium moisture content (EMC) of dried tomato slices 
from UC82B, Roma, Eva-F1 and Kerewa tomato varieties at 25° 
C, 35° C and 45° C at various water activities (0.11 to 0.97) are 
presented in Table 2. The hygroscopic equilibrium of dried tomato 
slices was attained at day 25. The equilibrium moisture content 
(EMC) values of the dried tomato slices ranged from 0.0272 to 
0.1902, 0.0263 to 0.1647, 0.0259 to 0.1698 and 0.0269 to 0.1726 
kg/kg at 25° C (aw = 0.11-0.97) for UC82B, Roma, Eva-f1 and 
Kerewa variety, respectively. EMC for UC82B, Roma, Eva-f1 and 
Kerewa at 32° C ranged from 0.0227 to 0.1511, 0.0197 to 0.1455, 
0.0228 to 0.1493 and 0.0208 to 0.1344 kg/kg, respectively. While 
at 45° C, it ranged from 0.0195 to 0.0820, 0.0189 to 0.0996, 0.0204 
to 0.0994 and 0.0186 to 0.0987 kg/kg for Uc82, Roma, Eva-f1 and 
Kerewa variety, respectively. The equilibrium moisture content of 
the dried tomato slices decreased with increasing temperature irre-
spective of variety.

(1)

(2)

(3)

(4)

(5)
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Table 2: Equilibrium Moisture Content (kg water/kg d.b) Values of Dried Tomato Slices from Different Tomato Varieties under 
Selected Temperatures and Water Activity

Temp (°C ) Water activity (aw) Equilibrium moisture content (kg water/kg d.b) 
UC82B Roma Eva-f1 Kerewa 

25 0.113 0.0272 0.0263 0.0259 0.0269
0.225 0.0251 0.0245 0.0306 0.0271
0.328 0.0270 0.0263 0.0322 0.0289
0.432 0.0362 0.0261 0.0354 0.0331
0.529 0.0328 0.0307 0.0408 0.0358
0.649 0.0393 0.0354 0.0481 0.0437
0.753 0.0574 0.0553 0.0714 0.0663
0.81 0.0868 0.0611 0.0838 0.0731
0.851 0.0958 0.0958 0.1157 0.0896
0.973 0.1902 0.1647 0.1698 0.1726

32 0.113 0.0227 0.0197 0.0228 0.0200
0.218 0.0236 0.0202 0.0241 0.0214
0.322 0.0247 0.0226 0.0255 0.0251
0.432 0.0313 0.0253 0.0297 0.0278
0.507 0.0310 0.0285 0.0392 0.0302
0.603 0.0366 0.0338 0.0382 0.0341
0.752 0.0559 0.0497 0.0648 0.0520
0.805 0.0776 0.0566 0.0705 0.0599
0.825 0.0897 0.0821 0.0973 0.0840
0.969 0.1511 0.1455 0.1493 0.1344

45 0.112 0.0195 0.0189 0.0204 0.0186
0.208 0.0198 0.0183 0.0209 0.0196
0.316 0.0202 0.0195 0.0220 0.0210
0.432 0.0246 0.0231 0.0233 0.0240
0.469 0.0271 0.0261 0.0350 0.0262
0.524 0.0304 0.0316 0.0365 0.0317
0.749 0.0494 0.0475 0.0573 0.0473
0.779 0.0563 0.0534 0.0642 0.0550
0.797 0.0819 0.0630 0.0842 0.0770
0.962 0.0820 0.0996 0.0994 0.0987

The observed increase of equilibrium moisture content with re-
duced temperature could be due to fact that the kinetic energy 
connected with water molecules present in tomato increased with 
increase in temperature resulting in decreased attractive forces and 
release of water molecules [27]. In addition, at constant tempera-
ture, the equilibrium moisture content (EMC) increased with in-
creasing relative humidity. Previous authors have reported similar 
trends for plants food commodities [28-36]. Shatadal and Jayas 
have also reported similar findings for low sugar containing food 
commodities [37]. The increase of EMC with humidity can be fur-
ther explained according to Ronald et al. who postulated change in 
excess enthalpy of water binding, dissociation of water, or increase 
in solubility of solute in water as temperature increases [38]. This 

implies that at any relative humidity, dried tomato slices become 
less hygroscopic with an increase in temperature. Consequently, in 
an atmosphere of constant relative humidity, it is expected to ad-
sorb more moisture at lower temperatures than it would at a higher 
temperature. Temperature affects the mobility of water molecules 
and the dynamic equilibrium between the vapour and adsorbed 
phases [39]. According to Al-Muhtaseb, at higher temperatures, 
the molecules of water are activated at energy levels that allow 
them to be detached from their sorption sites, thereby decreasing 
the equilibrium moisture content [39]. The increase in equilibrium 
moisture content (adsorbed moisture) as water activity increased 
at constant temperature implies that at lower water activities of the 
environment, fewer water was accessible for surface assimilation 
by the dried tomato slices. 
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Moisture Adsorption Isotherm Behavior of Dried Toma-
to Slices from Different Varieties 
The sorption isotherm curves in Figure 1 were obtained from the 
plot of equilibrium moisture content values in kg water/kg dry sol-
ids versus the water activity (aw) at the test temperatures (25o C, 
32o C and 45o C) [40]. The moisture isotherm curve describes the 
water ingression capacity of the dried tomato slices under different 
temperature and relative humidity. The adsorption isotherm curves 

of different varieties of dried tomato slices for the three tempera-
tures was sigmoidal, characteristic of many dried biological mate-
rials. The adsorption isotherms possessed sigmoidal-shaped char-
acteristics in accordance with BET classification indicating that 
equilibrium moisture increased swiftly as water activity increases. 
The experimental adsorption isotherms showed the temperature 
dependencies of isotherms for all the four varieties of dried tomato 
slices. 

Figure 1: Adsorption Isotherms of Dried Tomato Slices from UC82B, Roma, Eva-F1 and Kerewa variety at 25, 32 and 45° C 

All of the isotherm curves of the dried tomato slices were ob-
served to follow a pattern of type II sigmoid shape, as described by 
Brunauer et al classification of isotherm curves [41]. The isotherms 
are characteristics of plant food commodities and pattern of amor-
phous materials that is rich in hydrophilic constituents [39,42-47]. 
An increase in temperature at constant moisture content lowers the 
isotherm curves, reduce water activity and lower the vulnerability 
of the product to microbial deterioration [24,25,47]. According to 
Giovanelli et al, this product requires higher water removal during 
drying to reduce water activity and is more sensitive to moisture 
variations during storage [48-50].

The relationship between water activity and moisture adsorption 
of dried tomato slices from UC82B, Roma, Eva-f1 and Kerewa 
varieties is shown in Figures 2, 3 and 4, respectively. The adsorbed 

water corresponding to water activity below 0.75 was small for 
a relatively large increase in water activity. This shows that the 
critical equilibrium relative humidity (ERH) for dried tomato slic-
es from UC82B, Roma, Eva-f1 and Kerewa varieties lies above 
60% for the temperature range of 25 to 45° C. Beyond this level, 
there will be a huge rise in the moisture adsorbed with relatively 
low increase in water activity which depicts the region of rapid 
spoilage [21-23]. This finding is in agreement with the report of 
Loong et al for dried foods [50]. From Table 2, at higher water 
activity (> 0.75 aw) and temperature of 25° C, dried tomato slices 
of UC82B variety adsorbed more water than that of Kerewa, Roma 
and Eva-f1 variety. Subsequent increase in the temperature to 32° 
C and 45° C, the adsorbed moisture reduced across all varieties but 
at different rates.
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Figure 2: Adsorption Isotherms of Experimental and Predicted Values (GAB model) of Dried Tomato Slices from UC82B, Roma, 
Eva-F1 and Kerewa varieties at 25, 32 and 45° C.

Figure 3: Adsorption Isotherms of Experimental and Predicted Values (DLP model) of Dried Tomato Slices from UC82B, Roma, 
Eva-F1 and Kerewa varieties at 25, 32 and 45° C.
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Figure 4: Adsorption Isotherms of Experimental and Predicted Values (modified BET model) of Dried Tomato Slices from UC82B, 
Roma, Eva-F1 and Kerewa varieties at 25, 32 and 45° C

The difference in sorption capacity between the different variet-
ies of dried tomato slices at higher water activity (≥0.75 aw) may 
be due to variation in the structural cohesion of the dried tomato 
slices as well as their total soluble solids content. The analogy of 
water adsorption behavior at lower water activity established by 
the estimated values of the GAB monolayer moisture content in 
Table 3A which indicated that dried tomato slices from Roma vari-
ety was the most hygroscopic and dried tomato slices from Kerewa 
variety was the least hygroscopic.

The experimental adsorption data for the dried tomato slices from 
UC82B, Roma, Eva-f1 and Kerewa variety at 25˚ C, 32˚ C and 
45˚ C were plotted with predicted results from Guggenheim–An-
derson–de Boer (GAB), Double Log Polynomial (DLP), modified 
BET model equation as presented in Figures 2, 3 and 4, respective-
ly in line with the fitting criteria of lower percentage error (E%) 
and higher coefficient of determination (r2) to determine sorption 
parameters and plots. The GAB, DLP, modified BET model result-
ed into a Type II curve. It is evident from Figures 2, 3 and 4 that 
the isotherm curves are typically sigmoidal in shape.
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Table 3A: Estimates of the Parameters of GAB, DLP and Modified BET Model Equations for the Moisture Adsorption of 
Dried Tomato Slices from Uc82 (A), Roma (B), Eva-f1 (C) and Kerewa (D) variety at 25, 32 and 45˚ C

25°C 32°C 45°C
A B C D A B C D A B C D

GAB M 0.229 0.231 0.226 0.220 0.198 0.219 0.190 0.184 0.145 0.153 0.138 0.130
C 16.50 17.98 16.07 15.99 8.49 8.60 8.43 8.27 9.078 34.272 4.793 13.08
K 0.834 0.860 0.815 0.809 0.849 0.875 0.824 0.813 20.89 22.11 20.00 19.90
r2 0.987 0.976 0.977 0.996 0.989 0.98 0.972 0.975 0.991 0.975 0.999 0.992
RSS 0 0 0 0 0 0 0 0 0.001 0 0.001 0.001
E% 6.284 4.728 4.541 3.6 3.571 4.207 3.57 3.473 7.167 6.534 2.641 2.907
RMSE 0.013 0.11 0.10 0.049 0.099 0.089 0.094 0.099 0.113 0.06 0.013 0.107

M.BET A 0.020 0.018 0.024 0.020 0.020 0.017 0.021 0.018 0.019 0.017 0.022 0.018
B 0.922 0.919 0.885 0.909 0.898 0.916 0.887 0.896 0.848 0.865 0.824 0.851
r2 0.987 0.976 0.977 0.996 0.979 0.880 0.970 0.975 0.890 0.973 0.893 0.912
RSS 0.024 0.018 0.019 0.018 0.015 0.014 0.015 0.012 0.007 0.006 0.007 0.007

DLP b0 0.003 0.003 0.004 0.002 0.003 0.002 0.003 0.002 0.004 0.002 0.004 0.003
b1 0.019 0.019 0.021 0.014 0.019 0.014 0.017 0.014 0.016 0.011 0.015 0.013
b2 -0.011 -0.008 -0.017 -0.013 -0.014 -0.012 -0.017 -0.013 -0.016 -0.014 -0.019 -0.016
b3 0.026 0.022 0.029 0.029 0.024 0.022 0.026 0.023 0.022 0.022 0.025 0.022
r2 0.99 0.983 0.984 0.997 0.988 0.982 0.98 0.978 0.927 0.984 0.948 0.938
RSS 0 0 0 0 0 0 0 0 0.001 0 0 0
E% 10.419 11.7957 8.0909 5.6229 10.0346 7.424 9.5312 0.0083 6.8831 9.1423 6.6958 8.0311
RMSE 0.2278 0.1407 0.098 0.076 0.119 0.088 0.124 0.091 0.094 0.114 0.225 0.064

Modelling of Adsorption Isotherms of Dried Tomato 
Slices from Different Varieties
The parameters of GAB, DLP, modified BET, Oswin and Smith 
equations along with coefficient of determination (r2), mean rel-
ative percentage error (E%), root mean square error (RMSE) and 
residual sum of squares (RSS) for each of the models are summa-
rized in Table 3A & 3B. Based on the experimental data used to 
model the adsorption isotherm, the monolayer moisture content 
(MMC) of the dried tomato slices obtained through a non-linear 

regression analysis ranged from 0.145 to 0.229, 0.153 to 0.231, 
0.133 to 0.226 and 0.130 to 0.220 for UC82B, Roma, Eva-f1 and 
Kerewa variety, respectively. The least MMC recorded at 45˚ C for 
Kerewa variety while the highest MMC recorded by Roma variety 
at 25˚ C. The MMC was observed to decrease with increasing tem-
perature. Modeling of sorption data with GAB model permits the 
calculation of monolayer moisture content values that represents 
the moisture of a material when the whole surface covered with 
uni-molecular layer water vapour molecules [16,51].

Table 3B: Estimates of the Parameters of Smith and Oswin Model Equations for the Moisture Adsorption of Dried Tomato Slices 
from UC82B (A), Roma (B), Eva-f1(C) and Kerewa (D) Variety at 25, 32 and 45˚ C.

25°C 32°C 45°C
A B C D A B C D A B C D

Smith A 0.005 0.006 0.014 0.01 0.009 0.005 0.011 0.009 0.013 0.012 0.017 0.013
B 0.048 0.042 0.044 0.043 0.041 0.039 0.04 0.035 0.028 0.027 0.028 0.028
r2 0.957 0.943 0.968 0.947 0.971 0.96 0.968 0.965 0.89 0.957 0.885 0.913
RSS 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0 0.001 0.001
E% 21.234 23.473 11.978 14.174 14.182 18.458 11.871 14.105 13.014 9.094 12.75 11.416
RMSE 0.279 0.279 0.146 0.191 0.187 0.222 0.152 0.164 0.156 0.115 0.182 0.138

Oswin A -0.936 -0.943 -0.934 -0.932 -0.936 -0.943 -0.934 -0.943 -0.949 -0.952 -0.945 -0.95
B 0.035 0.033 0.036 0.037 0.035 0.033 0.036 0.031 0.025 0.023 0.026 0.024
r2 0.708 0.665 0.735 0.667 0.708 0.665 0.735 0.704 0.744 0.764 0.799 0.755
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RSS 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.002 0.001 0.001 0.001
E% 
RMSE

41.126 44.457 33.293 41.781 44.489 48.878 41.752 42.213 37.93 33.88 32.38 36.455

0.534 0.565 0.477 0.536 0.575 0.615 0.534 0.535 0.456 0.429 0.426 0.443

The increase of sorption temperature from 25 to 45 ˚C resulted in 
decreased monomolecular layer capacity in all varieties of dried 
tomato slices, which can be due to the exothermic nature of the 
sorption phenomenon. The values obtained in this study are in 
agreement with the monolayer moisture content reported by Kira-
noudis et al and Alakali et al for dried tomato [16,51]. A decrease 
in GAB monolayer moisture content with corresponding rise in 
temperature depicts that the absorbed water molecules gained ki-
netic energy making the attractive forces to be loosened and this 
permitted some water molecules to dissociate from their sorption 
sites thereby decreasing the equilibrium moisture values [26,49]. 
It could also be linked to the variation of excitation states, distance 
and attractive forces between molecules as temperature was altered 
and to a reduction in the number of active sites because of physi-
cal-chemical changes caused at elevated temperatures [42,52,53]. 

The decrease in monolayer moisture with temperature obtained in 
this study is in tandem with findings of Akanbi et al for dried toma-
to slices; Goula et al for dried tomato pulp; Mariem and Mabrouk 
for dried tomato slices; Ariahu et al for fresh water crayfish and 
for freeze dried Mexican red sauce by Escobedo-Avellaneda et al. 
[3,27,54-56]. According to these authors, this may be due to the 
reduction in the number of active sites for water binding because 
of the physical and chemical changes in the product induced by 
temperature. In addition, there is another possibility that as the 
temperature is raised, there is an increase in kinetic energy of wa-
ter vapour molecules and this makes them less stable, thereby, fa-
voring their departure from the binding sites of food material, thus 
causing the monolayer moisture content to decrease [57]. These 
observations imply that the optimum moisture for shelf stability 
of tomato slices will be determined in relation to the anticipated 
storage temperature. Therefore, the monolayer moisture content 
represents a critical parameter because it is the moisture content 
that guarantees minimal loss of product quality for a long period at 
a particular temperature, with minimal deteriorating reaction rate 
below this value, except for unsaturated fat oxidation [54].

The energy constant (C) obtained from the GAB model, ranged 
from 8.49 to 20.89, 8.60 to 22.11, 8.43 to 20.00 and 8.27 to 19.90 
for UC82B, Roma, Eva-f1 and Kerewa dried slices, respectively 
with the Roma variety having the highest value at 45 ˚C and Kere-
wa variety having the least value at 32 ˚C. As reported by Lewicki, 
the value of the C parameter is an indication of how appropriate is 
the choice of GAB model to describe empirical sorption data [58]. 
It has been postulated that strong adsorbent-adsorbate interactions, 
which are exothermic, are favoured at lower temperature, resulting 
in an increase in parameter C and decrease in temperature [59]. 
However, the trend observed in the present study is in contrast 
with findings of Diosady et al as the value of C was found to be 

irregular for dried tomato slices from UC82B, Roma, Eva-f1 and 
Kerewa variety since it neither decreased with temperature nor in-
creased with temperature. Goula et al, Akanbi et al, Ouafi et al, 
Rhim, and Hong also reported a similar trend for the C value of 
dried tomato pulp, dried tomato slices, Bay leaves and red pepper, 
respectively [17,54,59-61]. This phenomenon agrees with litera-
ture data such as the findings of Iglesias and Chirife which showed 
that for many food products one cannot talk about an increasing 
tendency of C constant depending on the decrease of temperature 
[62]. Iglesia and Chirife studied more than 30 different foods and 
reported that in about 74% of the samples, C parameter did not 
decrease with increase in temperature, which might be due to ir-
reversible changes associated with increasing temperature such as 
enzymatic reaction, or protein denaturation [62]. Pérez-Alonso et 
al indicate the possibility of the C constant losing its physical state 
because of compensation of parameters [63]. 

The constant correcting properties (K) ranged from 0.834 to 0.870, 
0.860 to 0.881, 0.815 to 0.840 and 0.809 to 0.824 for UC82B, 
Roma, Eva-f1 and Kerewa variety, respectively. The highest K val-
ue recorded for Roma variety at 45˚ C while the least was found 
in Kerewa variety at 25 ˚C. The K value increased as temperature 
increased. Furthermore, coefficient of determination (r2) ranged 
from 0.987 to 0.901 with UC82B variety having the highest value 
at 25 ˚C and the least value at 45 ˚C. The C values obtained are 
much higher than K value indicating that the heat of sorption of the 
first layer is higher than that of the multilayers. The value of the K 
parameter depicts the scope of application of the GAB model [58]. 
With increase in temperature from 25 to 45 ̊ C, the K parameter as-
sumed higher values for dried tomato slices from UC82B, Roma, 
Eva-f1 and Kerewa variety, which imply a change in the energy 
level of water molecules forming a multilayer system. Increase in 
K was an indication that the multilayer molecules became more 
entropic at higher temperature [59]. The calculated figures for 
the constant K was lower than unity (1.0) and this agrees with 
the GAB model’s assumption that the multilayer has character-
istics between those of the monolayer and bulk liquid. When k = 
1, the multilayer has bulk liquid properties. This is in agreement 
with previous reports for similar products such as by Mariem and 
Mabrouk for dried tomato slices; Alakali et al for dried ginger slic-
es and Lomauro et al for dried onions [16,55,64].

The residual sum of square (RSS) for the GAB model ranged be-
tween 0 and 0.001 across the varieties, while the percentage error 
(E%) varied between 2.641 and 7.167% with UC82B dried slices 
having the highest at 45 ˚C while the Eva-f1 had the least at 45˚ 
C. The root mean square error (RMSE) ranged from 0.06 to 0.113 
with UC82B variety having the highest value at 45˚ C and Roma 
variety having the least value at 45˚ C. 
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From Table 3A, the empirical constants b0, b1, b2 and b3 (ob-
tained from DLP model) ranged from 0.002 to 0.004, 0.011 to 
0.019, -0.019 to -0.008 and 0.022 to 0.029, respectively. The coef-
ficient of determination (r2) from the DLP model ranged between 
0.927 and 0.997 with Kerewa variety having the highest value at 
25 ˚C while UC82B variety had the least value at 45 ˚C. The resid-
ual sum of square (RSS) ranged from 0 to 0.001 with Roma variety 
at 45 ˚C having the highest value of 0.001 while the others at all 
temperatures had 0 value for RSS. From the DLP model, Kerewa 
variety had the least percentage error (E%) at 25 ˚C while Eva-f1 
variety had the highest (E%) at 25˚C, the values ranged from 4.316 
to 9.48%. Similarly, for the root mean square error (RMSE), the 
values ranged from 0.076 to 0.2278 with Kerewa variety having 
the least at 25˚ C while UC82B variety had the highest at 25˚ C. 
Percentage error ranged between 4.32 and 9.48% with Kerewa va-
riety having the least percentage error (E%) at 25 ˚C while Roma 
variety had the highest at 45˚ C. 

Generally, a model with a P value of less than 10% is considered 
suitable [64]. From the parameters presented in Table 3A & 3B, 
the mean relative percentage error (E%), root mean square error 
(RMSE) and residual sum of squares (RSS) for all four varieties 
of dried tomato slices were the least for GAB model followed by 
DLP and modified BET models. On the other hand, mean relative 
percentage error (E%), root mean square error (RMSE) and residu-
al sum of squares (RSS) for Oswin and Smith were relatively high. 
The coefficient of determination (r2) for all four varieties of dried 
tomato slices was highest for GAB equation followed by DLP and 
modified BET equations while that obtained for Oswin and Smith 
equations was the least. Therefore, GAB, DLP and modified BET 
sorption models could model adsorption behaviour of dried tomato 
slices from UC82B, Roma, Eva-f1 and Kerewa varieties with high 
predictive accuracy.

This is in agreement with previous authors that GAB model has 
been proven to be the best fitting model in several food products 
such as potato, tomato, green pepper and carrot as reported by 
Kiranoudis et al, yellow dent corn by Samapundo et al, fruits and 
vegetables as well as meat products by Lomauro et al, and maize 
flour by Oyelade [51,64-66]. These findings is in agreement with 
that obtained by previous authors, who had studied the sorption 
isotherms of many fruits and vegetables. Kiranoudis et al inves-

tigated the equilibrium moisture content of the potato, carrot, to-
mato, green pepper and onion in the range of 10 to 90% relative 
humidity and at three different temperatures (30° C, 45° C and 60° 
C) and concluded that GAB model is the best for predicting the ex-
perimental sorption data. Mc Laughlin and Magee determined the 
sorption isotherms of potatoes at temperatures from 30 to 60° C, 
and among the models tested, the GAB model gave the best adjust-
ment with the experimental data [51,52]. According to Noumi et 
al, the GAB model adequately represents the sorption isotherms of 
Canarium schweinfurthii fruit, while Akanbi et al concluded that 
the equilibrium moisture content of tomato slices follows closely 
the GAB equation [17,67]. According to Mariem and Mabrouk, 
the GAB model adequately represents the desorption isotherms of 
tomato pulp and the adsorption isotherms of tomato powders [55]. 
Goula et al studied the adsorption isotherms of tomato powder 
within a temperature range of 70 and 20 °C, and reported that the 
GAB model adequately describe the sorption isotherms at varying 
water activity [54].

Isosteric Heat of Sorption
The isosteric heat of sorption (HoS) was estimated from the slope 
of the plot between ln (aw) and 1/T (K) in Figure 5 at different 
moisture contents. The HoS values varied from 3.756 to 20.244 
KJ/mol for UC82B dried tomato slices, 2.976 to 14.951 KJ/mol for 
Roma dried tomato slices, and 2.321 to 17.594 KJ/mol for Eva-f1 
dried tomato slices and from 1.959 to 16.055 KJ/mol for Kerewa 
dried tomato slices. The HoS value at the lowest moisture level 
(0.02 kg/kg) was highest for dried tomato slices from UC82B vari-
ety (20.244 KJ/mol) while dried tomato slices from Roma variety 
(14.951 KJ/mol) had the least HoS value. Similarly, the HoS val-
ue at the highest moisture level (0.12 kg/kg) was lowest for dried 
tomato slices from Kerewa variety (1.959 KJ/kg) and highest for 
dried tomato slices from UC82B variety (3.756 KJ/kg). The result-
ing HoS were then plotted against equilibrium moisture content in 
Figure 6 to obtain the net isoteric heat of sorption. The net isoteric 
heat of sorption curve indicated that the net isosteric heat of ad-
sorption decreased with an increase in moisture content. As shown 
in the isotherm plots, a steep slope was observed. This implies that 
there is intermolecular attraction forces between sorptive sites and 
water vapour. However, at lower moisture content, the isosteric 
heat of sorption was high which thereafter decreased when mois-
ture contents became higher. 
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Figure 5: Net-isoteric plot of ln(aw) versus 1/T (K) at different moisture content levels of dried tomato slices from UC82B, Roma,  
Eva-F1 and Kerewa variety

Figure 6: Plot of Isoteric Heat of Sorption Versus Equilibrium Moisture Content for Dried Tomato Slices from UC82B, Roma, Eva-F1 
and Kerewa variety
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The association between ln(aw) and the reciprocal of absolute 
temperature (1/T) for dried tomato slices from UC82B, Roma, 
Eva-f1 and Kerewa varieties at constant moisture content showed 
that the isoteric were straight lines which agrees with findings of 
Ariahu et al and Labuza et al [49,56]. The HoS also termed as 
differential enthalpy is the minimum amount of heat required to 
remove or add a given amount of water [24,68]. Thus, the HoS is 
considered as indicative of the binding forces between the sorption 
sites (adsorbent) and the water vapour (adsorbate) [42]. The ob-
tained curves for dried tomato slices from UC82B, Roma, Eva-f1 
and Kerewa varieties showed that the sorption heat increases when 
the water content decrease. The higher heat of adsorption at lower 
moisture content can be justified because of the greater resistance 
to migration of water molecules from interior to the outer surface 
of the food samples [29].

In effect, when the moisture content increased, the sorption sites 
available decrease thus, resulting in a reduction in the sorption 
heat [69]. Tsami postulated that high value of the sorption heat at 
low moisture content, is due to the existence of the highly active 
polar sites on the surface of the product that are covered with water 
molecules forming a monolayer [70]. Iglesia and Chirife showed 
that sorption occurs firstly on available sites, which are highly ac-
tive resulting into high interactive energy [62]. Therefore, it takes 
place on less active sites bringing about a reduction in the isosteric 
heat and then the active sites become busy with the increase of the 
equilibrium moisture content. Salgado et al explained this occur-
rence by the fact that in a very restricted field of moisture, when 
the moisture content increases, some products swell and ease the 
opening of new adsorption sites of strong connections, which in-
creased the isosteric heat [71]. The isosteric heat of adsorption 
curve thus exhibit a regular fall with higher moisture content as 
earlier reported for dried tomato slices; Ziziphus leaf powder; mint 
leaf; and Red onion slices [17,47,55,72,73]. 

Conclusion
Moisture adsorption isotherm of dried tomato slices from UC82B, 
Roma, Eva-f1 and Kerewa varieties exhibited a sigmoid isotherm 
curve typical of the type II BET classification. Temperature shown 
to affect the sorption behavior because the equilibrium moisture 
content decreased with increasing temperature at constant water 
activity. Within the temperature range studied, the GAB, DLP and 
the modified BET models found to best describe the experimental 
data within the entire water activity range. An exponential rela-
tionship significantly describe the interdependence of the isoteric 
heat of sorption on the equilibrium moisture content [74,75].
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